aes220
FIFO Example

High-Speed USB FPGA aes220 Mini-Module

Aessent Technology Ltd

aes220 High-Speed USB FPGA Mini-Module

FIFO Example V1.0

(B2
2=l @

iy o S Q000000 =
- = g2 g2z
Trowmg = ASOIOUYIDY

WO JUISSIR MMM
2lOOO0O0™

n
= =}
o EHNES53
h
= oo oo
o LeXed LeXed

s}

Mini-Module Series

Doc Nb: UM220-07-A
www.aessent.com

FIFO Example

aes220_FifoExample_V1.0

Table of Contents

1 DESCIIPHION. ...ttt bbbt 3
2 VEIIYING YOUE SEIUD:vvrttreetiseisisctseet ettt bbbttt 3
3 SettiNg UP the PIOJECT. ...t 3
4 SIMUIAHING the BXAMPIE......ceuiiieeiscieiieee bbb 4

4.1 What i gOiNG 10 NAPPEN........viieeirirri et 4

4.2 RUNNING the SIMUIALION. ... 5
5 IMPIEMENtiNG the JESIGN.......c.eviiiieire bbb 6
B ON HNE PO SIHE......eeeceee it 7

lHlustration Index

Figure 1: FIFO Example VHDL Top Level BIOCK DIi@gram..........cccrueriereeerieresineissssesesessesississssessesessesssessssenas 3
Figure 2: ReSUS array: JatiN_ar..........ccreuriieriiieiiieisieisesie st 6
AESSENT

Document Number: UM220-07-A

aes220_FifoExample_V1.0

1 Description

This example aims to demonstrate the communication process between the PC and the aes220 module. We make use of the FX2
interface and pipes in and out described in the module User Manual. We also will be using a short C program showing how to use
the C routines described in the libaes220 API (http:/www.aessent.com/support/aes220/apidocs/files/aes220 API-h.html)

The C program simply sends some bytes to the module, read them back and display them on a terminal console. The module stores
the bytes coming in in a FIFO (First In First Out memory) and reads them out when asked to produce them.

To achieve this on the FPGA side we use the pipeln and pipeOut entities, the FIFO makes use of the device BRAM components
which address buses are controlled using read/write pointers. These however are transparent to the user. The FIFO interface is a
VALID/READY interface directly compatible with the pipes signals.

- FIFO
a
oS VALID P VALID READY =
=
8o READY |g READY VALID
| W
= o
883 DATA DATA in DATA out
O 0O =T
[
S
oS READY
E = VALID |g
S C\l: g
223 DATA
O 0O =T

Figure 1: FIFO Example VHDL Top Level Block Diagram

The example shows how to set up the project using Xilinx WebISE (freely available from the Xilinx website www.xilinx.com). How to
load the relevant files into the project and simulate the design using the provided simulation package for the aes220 module. Once
simulated the example is compiled and downloaded into the device where it can be run using the C program provided. The C
program is itself described so it can easily be used as a reference for future programs. Also provided with the example are C++ and
C# source files, however these are not described here as they can be used in the same way as the C example.

2 Verifying your setup:

Before trying to run this example it might be a good idea to verify your setup if you have never used the aes220 module before. You
can do this by following the instructions in the RunningMyFirstExample documentation which contains all the files required to setup
and run a short, basic example. That will help you ensure all the basic software requirements are in place on your PC.

3 Setting up the project

We will be using Xilinx Web ISE tool in this example. The tool is freely available from Xilinx web site (see www.xilinx.com). For other
tools, please, refer to the tool's own documentation, however the options shown here should apply whatever the tool used.

Note: only the options relevant to creating a project for the aes220 are shown here. For a deeper understanding of the different
options of the Xilinx Web ISE tool, please, refer to the Xilinx documentation.

Page 3of 7

AESSENT

http://www.aessent.com/support/aes220/apidocs/files/aes220_API-h.html
http://www.xilinx.com/
http://www.xilinx.com/

aes220_FifoExample_V1.0

Create a new project using the New Project Wizard and make sure to set the project settings to:
Family: Spartan 3A and Spartan 3AN

Device: XC3S200AN or XC3S400AN depending on which module you are developing for.
Package: FTG256

Speed: -4

Optionally you can change the VHDL Source Analysis Standard to VHDL-200X

Now add the source files to the project, you will need:
From the example directory:
* aes220_Fifo_Example_Testbench.vhd
* aes220_Fifo_Example.vhd
* Fifo.vhd
» FifoController.vhd
+ S58S8DualPortRAM_V1.0.0.vhd
Set the Association to Simulation for the testbench file and leave the rest to All.

From the vhdl directory:
* aes220_Library_V1.3.x.vhd
* aes220_Package_V1.3.vhd
* aes220_SimulationPackage_V1.3.x.vhd
Set the Association to Simulation for the Simulation package and leave the rest to All.

From the ucf directory:
* aes220_RevA1_FX2_Interface.ucf
e aes220_RevA1_LED.ucf
Leave the Associations to Implementation for both files.

Once all the files have been added select the Simulation View for the Hierarchy window and highlight the Testbench file. In the
Processes window below expend the ISim Simulator field and highlight the Simulate Behavioral Mode! field. Now click on the
Process menu entry of the ISE Project Navigator main menu and select Process Properties. In the new Process Properties
window change the Simulation Run Time from 1000ns to 2000ns.

The project is now ready to be simulated.

4 Simulating the example
4.1What is going to happen

Before launching the simulation we will have a look at the Testbench and example files and describe in more details what it is
happening.

Page 4 of 7

AESSENT

aes220_FifoExample_V1.0

We want to write data coming from the PC to the FIFO inside the FPGA using a USB pipe. In order to do that we link a pipeln entity
to the data input port of the FIFO, matching the READY / VALID ports.

Pipe 1 READY signal will tell the FIFO that valid data is present on the data port. If the FIFO is not full its READY signal will already
be asserted and with each rising clock edge of the interface new data will appear on the DATA port of the pipe.

Once the data has been written to the FIFO we want to read it back on the PC. To do this we we connect another pipe to the other
side of the FIFO, a pipeOut entity this time. We connect the READY port of the pipe to the READY port of the FIFO and the VALID
ports of both entities together.

When the PC asks for the data the READY signal is asserted and if the VALID signal of the FIFO is asserted then with each new
rising edge of the interface clock the data present on the DATA port of the pipe will be considered valid. The VALID signal of the FIFO
is asserted as long as the FIFO is not empty.

In order to exercise and simulate our design we use a testbench file which, among other things, will replicate what the PC will have
to do to communicate with the design in the FPGA.

Most of the Testbench file is self explanatory but we will describe a few things here.
The clock period on the board is 20.8ns so, although not critical, we set it to be that in the test bench.

The channels (or pipes) addresses need to match the ones set in the example file. Note however that a pipe in in the FPGA is a pipe
out on the PC side.

-- Channels addresses:
variable outChannel v : integer := 1;
2;

variable inChannel v : integer :

We use byte arrays as data to be sent or received through the pipes, just like the C functions of the API, and after declaring them we
fill the array to be written to the RAM in the FPGA with incrementing numbers using the index of a simple For loop. At the same time
we set the array to be written into, when reading the data back from the RAM, to all zero.

for index in 0 to dataSize v - 1 loop
dataOut_ar(index) := conv_std logic_vector(index, 8);

dataIn_ar(index) := (others => '0');

end loop;

We assert and de-assert the reset signal inserting a wait statement in between covering some periods (one period would have been
enough). Note that although the For loop has been placed between the assertion and release of the reset signal it in fact has no
effect on the timing.

We then proceed with sending the data to the FPGA via the pipe outchannel and read it back with the pipe inChannel

-- Sending data out

pipe_out(outChannel v, dataSizeOut_v, dataOut_ar,

rst_s, fi_s, if_s, ifData_s);

-- Receiving data in
-- Read the incoming data (write it into the dataln_ar array)

pipe_in(inChannel v, dataSizeIn v, dataln_ar,

rst_s, fi_s, if s, ifData_s);

4.2Running the simulation

Page 50f 7

AESSENT

aes220_FifoExample_V1.0

To launch the simulation double click on the Simulate Behavioral Model in the Processes window.

The ISim window will appear. By default there won't be many signals in the graph window. This is due to the nature of the test bench
in this case. We have written bytes to arrays and effectively want to check the contents of the array in which the design should have
written the contents of the RAM.

To do this we expand the aes220_Fifo_example_testbench_ent field in the Instance and Processes window and select the

test_proc field. In the Objects window we will see the list of declared variables including the various arrays. The one we are
interested in is datain_ar which should match dataout_ar, that is show in incrementing binary sequence from 0000 to 1111.

X2 ¥ 15im (P.28xd) - [WaveConfig1.wcfg]
Efile Edit Wiew Simulation Window Layout Help

02 o ® oo O RS B = |0
Inskances and Processes « ~ = % |Objects H
ﬂ & ;5} 2, ﬂ 0 ..:?.E 2, Simulation Objecks For:kest_proc
fl ;
Instance and Process Mame |Des -&l -Eﬂ Eﬁ = 'Ié Ll e
i} aes220_fifo_example_testbenc .. aes2 | Objeckt Name Value Data Type
L} myspp aesl B T Int Type
3 cclock aes? 1B 10 Int Type
(5 94 aes? |}, datasizeoutv LoOOO Int Type
) |} datasizeinv 10000 Int Type
(38 std_logic_1164 std_ 05 dataout_ar[1... , 000011.. Array
(38 numeric_std num 25 datain_ar[15:0] A , 000011. Array
(38 textio text 24115 Arra :
j vital_timing vital % EM} 00001111 v Va|UeS Wl’ltten baCk tO
!.‘J vital_primitives vital 25 [13] 00001110 dataln ar
’fJ weomponenks vcoom % [12] 00001101 3 -
(8l vpkg vpkg 25 11 00001100 -
& aes220_simulationpackage_v1... aes2 25 0] 00001011 Array
(¢l aes220_package_vi_3 aes? 25 [9] oooololo Array
=2 8] 00001001 Array
2 71 00001000 Array
=25 [6] 00000111 Array
25 [5] 00000110 Array
2[4 00000101 Array
25 3] 00000100 Array
27 2] 00000011 Array
2 1] 00000010 Array
% [0] Array
% led sf4:1] Array
? clock s 0 Lagic
L@ test Q Logic
1 reset actire £.. 1 Logic
1§ number_of ... 10100 int Type

Figure 2: Results array: datain_ar
5 Implementing the design

Once the project has been simulated and the simulation gives the expected results it is time to implement the design in order to
generate a configuration file for the FGPA.

To do this change the hierarchy view to Implementation, make sure the aes220_Fifo_Example_ent entity is selected and in the
Processes window select Generate Programming File. Double clicking on this file would launch the creation of the programming
file (via synthesis, mapping...) but before doing so ensure that the option Generate Binary Configuration File is selected in the
Process Properties window (the Generate Programming File field needs to be selected in order for the window to display the
relevant options). If this is the case double click on Generate Programming File.

The Synthesize-XST field in the Processes window should show a yellow waming triangle signaling there are some warnings to
consider.

The Summary window will display the number of warnings which should be 6 in our case. Clicking on the link will display the
warnings. These should be about IP_in signal not being used and are nothing to worry about. There should also be two about some
of the BRAM ports not being used and again can be ignored. The rest should be information messages.

The Implement Design and Generate Programming File fields of the Processes window should both display a green tick
signifying that everything went smoothly.

Page 6 of 7

AESSENT

aes220_FifoExample_V1.0

The binary configuration file has now been created and can be found in the workspace directory of the project. It is the
aes220_Fifo_Example_ent.bin file and is ready to be downloaded into the FPGA using the aes220Programmer.

6 On the PC side

The aes220_FifoExample.c file reproduces what was devised in the Testbench file. The program once compiled will send the data
through pipe 1 when run and then read the data coming back through pipe 2.

This is one example on how to use the pipes for communicating with the FPGA and shows how the C program relates to the
testbench. Although future programs will vary widely from this example some things will still need to be present:

The Header file for the API library needs to be included and its path updated to where ever its location is on the system being used to
compile the program. The library file itself (libaes220-x.x.x.dll or .s0) needs to be added to the relevant directory (most likely the
System32 (for 32 it systems) or SysWOW64 (for 64 bit systems) directories on Windows and /usr/lib on Linux)

‘#include "../../../API/aes220_API.h" ‘

Before communicating with the module via the USB the device needs to be “opened” on the port. This is done with the
aes220_Open(idx, vbs) C function in the following manner:

int idx = 0; // Module ID 0 if only aes220 module plugged in

int vbs = 3; // Messages verbosity, min = 0, max = 9

// Open the device and declare a handle pointing to it

aes220_handle *aes220 ptr = aes220_Open(idx, vbs);

If only one aes220 device is plugged in then it will automatically have an identification number idx of 0. If more then one device is
plugged in then the idx number assigned to each module with increment with the order they are plugged in. If one module is
subsequently unplugged the idx number for the other modules will not change unless the PC is power cycled. Note that you can use
the function aes220_Get_Board_Info(...) to read the module serial number to link the idx number to the appropriate module.

The vbs switch is to determine the level of comments being recorded in the log file found in the same directory as the program
executable. Select vbs= 0 for a minimum amount of log comment and 9 for a maximum, or anything in between (see the API
documentation for more details).

Eventually you will have finished with using the device so remember to close the device down. That is terminate the USB
communication with it. The communication can always be re-opened if needed:

// Close the device when no longer required

aes220_Close(aes220_ptr);

For more information on the different functions available look at the APl documentation on the website: www.aessent.com

Page 7 of 7

AESSENT

http://www.aessent.com/

	1 Description
	2 Verifying your setup:
	3 Setting up the project
	4 Simulating the example
	4.1 What is going to happen
	4.2 Running the simulation

	5 Implementing the design
	6 On the PC side

